1、链接:
2、题目:
Description
Given two integers n and m, count the number of pairs of integers (a,b) such that 0 < a < b < n and (a^2+b^2 +m)/(ab) is an integer.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
InputYou will be given a number of cases in the input. Each case is specified by a line containing the integers n and m. The end of input is indicated by a case in which n = m = 0. You may assume that 0 < n <= 100.
OutputFor each case, print the case number as well as the number of pairs (a,b) satisfying the given property. Print the output for each case on one line in the format as shown below.
Sample Input1
10 1
20 330 40 0Sample OutputCase 1: 2
Case 2: 4Case 3: 53、解题分析:
根据题意知:求在(a, b)区间内(a^2 + b^2 +m)/a*b的结果是一个整形数的个数,即(a^2 + b^2 +m)%(a*b)==0暴力求解即可
注意:注意输出格式每一大组之间有一个换行
4、代码
#includeusing namespace std;int main(){ int N; scanf("%d",&N); int n,m; while(N--) { int cas = 1; while(~scanf("%d%d",&n,&m)){ int count = 0; if(n == 0 && m ==0 ) break; for(int i = 1; i < n; i++) { for(int j = i+1; j< n; j++) { if((i*i + j*j + m)%(i*j) == 0) { count++; } } } printf("Case %d: %d\n",cas++,count); } if(N) printf("\n"); } return 0;}/*110 120 330 40 0*/